Ideal Gas Law Worksheet 2 Gas Stoichiometry and Molecular Formula Determination

Methane, the principal component of natural gas, is used for heating and cooking.

- a) Write a balanced chemical equation for the combustion of methane.
- b) If 15 moles of methane are reacted, what is the volume of carbon dioxide (in liters) produced at at 23.0°C and 0.985 atm? (Chang #52)

2004 Exam Question 2

$$Fe(s) + 3/2 O_2(g) \rightarrow Fe_2O_3(s)$$

Iron reacts with oxygen to produce iron (III) oxide, as represented by the equation above. A 75.0 g sample of Fe(s) is mixed with 11.5 L of O₂ (g) at 2.66 atm and 298 K.

- a) calculate the number of moles of each of the following before the reaction begins. i) Fe (s) ii) $O_2(g)$
- b) Identify your limiting reactant when the mixture is heated to produce solid iron (III) oxide. table
 - c) Calculate the number of moles of iron (III) oxide produced when the reaction proceeds to completion.

1998 AP exam

An unknown compound contains only the three elements C,H, and O. A pure sample of the compound is analyzed and found to be 65.60 percent C and 9.44 percent H by mass.

- (a) Determine the empirical formula of the compound.
- (b) When 1.570 grams of the compound is vaporized at 300 °C and 1.00 atmosphere, the gas occupies a volume of 577 milliliters. What is the molar mass of the compound based on this result? $MM = \frac{m RT}{p_V} = (1510) \cos 573) = 128 \cdot 009 |mo|$ (c) Determine the molecular formula of the compound.

65.60 gC	9,449H 1,008 mol H	24.96g0 16.00 mol 0	C H O 3.5 6 1
5.46 1.50	9.37	1.56	C7 H12 02 a

2003 Exam B

9

In an experiment, a sample of an unknown, pure gaseous hydrocarbon was analyzed. Results showed the sample contained 6.000 g of carbon and 1.344 g of hydrogen.

a) determine the empirical formula of the hydrocarbon.

36+8=449/mul

- b) The density of hydrocarbon at 25°C and 1.09 atm is 1.96 g/L.
 - Calculate the molar mass of the hydrocarbon i) ii) Determine the molecular formula of the hydrocarbon